Skip to main content
Version: 1.43

Supported Versions

This article describes the supported versions and compatibility with supported ML frameworks. For some frameworks, links to example repositories on Gitlab are included. These example repositories can be used to create example deployments on Deeploy.

Deeploy1.29.x - 1.31.x1.32.x - 1.37.x1.38.x - 1.41.x1.42.x +
KServe0.9.00.11.00.12.00.13.1
Python3.7 - 3.93.8 - 3.113.8 - 3.113.9 - 3.11

Model Frameworks

The versions described in the following sections are the recommended versions on which the model images have been built. If you deviate from the version, check for potential compatibility issues.

PyTorch

Pytorch default imagepytorch/torchserve-kfs:0.6.0pytorch/torchserve-kfs:0.8.0pytorch/torchserve-kfs:0.9.0
torch1.7.12.0.02.1.0
torchserve0.7.00.8.00.9.0
torch-model-archiver0.7.00.8.00.9.0

Tensorflow

Tensorflow default imagetensorflow/serving:2.6.2tensorflow/serving:2.6.2
tensorflow2.6.22.6.2

XGBoost

XGBoost default imagekserve/xgbserver:v0.9.0kserve/xgbserver:v0.11.0kserve/xgbserver:v0.12.0
xgboost1.5.01.7.52.0.2

Scikit-learn

Scikit-learn default imagekserve/sklearnserver:v0.9.0kserve/sklearnserver:v0.11.0
scikit-learn1.0.11.3.0
joblib1.1.01.3.1

LightGBM

LightGBM default imagekserve/lgbserver:v0.9.0kserve/lgbserver:v0.11.0
lightgbm3.3.23.3.2

Huggingface

Triton server default image-kserve/huggingfaceserver:v0.12.0
huggingface-hub->=0.14.0,<1.0.0

NVIDIA Triton

Triton server default image-nvcr.io/nvidia/tritonserver:23.05-py3
triton-2.34.0
pytorch-2.0.0
onnx-1.15.0
tensorrt-8.6.1.2
tensorflow-2.12.0

Custom model Docker images

Deeploy versionPrivate Cloud < v1.32.0Private Cloud >= v1.32.0, < v1.38.0Private Cloud >= v1.38.0, < v1.42.0Cloud & Private Cloud >= v1.42.0
deeploy-cli-> 1.35.0>= 1.38.0>= 1.42.0
kserve0.9.00.11.00.12.00.13.1

Standard Explainers

Tree SHAP

Deploy a tree SHAP explainer without training it yourself. Available only for tree-based classification models when using the XGBoost, Scikit-learn, or LightGBM model frameworks.

Saliency

Deploy a saliency based explainer without training it yourself. Available only for text generation and text-to-text generation models when using the Hugging Face model framework.

Attention

Deploy a attention based explainer without training it yourself. Available only for text generation and text-to-text generation models when using the Hugging Face model framework.

Trained Explainer Frameworks

The versions described in the following sections are the recommended versions for the specific frameworks to use. If you deviate from the version, check for potential compatibility issues.

SHAP

Deeploy versionPrivate Cloud < v1.32.0Cloud & Private Cloud >= v1.32.0
shap0.36.00.42.1
dill0.3.30.3.7

Anchors

Deeploy versionPrivate Cloud < v1.32.0Cloud & Private Cloud >= v1.32.0
alibi0.6.40.9.4
dill0.3.30.3.7

MACE

Deeploy versionPrivate Cloud < v1.32.0Cloud & Private Cloud >= v1.32.0
omnixai1.1.41.3.1
dill0.3.30.3.7

PDP

  • Expected pre-trained explainer artefact: dill (explainer.dill)
Deeploy versionPrivate Cloud < v1.32.0Cloud & Private Cloud >= v1.32.0
omnixai1.1.41.3.1
dill0.3.30.3.7

Custom explainer Docker images

Deeploy versionPrivate Cloud < v1.32.0Private Cloud >= v1.32.0, < v1.38.0Private Cloud >= v1.38.0, <1.42.0Cloud & Private Cloud >= v1.42.0
deeploy-cli-> 1.35.0>= 1.38.0>= 1.42.0
kserve0.9.00.11.00.12.00.13.1

Transformer Frameworks

Custom transformer Docker images

Deeploy versionPrivate Cloud < v1.32.0Private Cloud >= v1.32.0, < v1.38.0Private Cloud >= v1.38.0, <1.42.0Cloud & Private Cloud >= v1.42.0
deeploy-cli-> 1.35.0>= 1.38.0>= 1.42.0
kserve0.9.00.11.00.12.00.13.1